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Pree shear layer stability measurements with a hot wire revealed that the probe 
itself can trigger and sustain upstream instability modes like the slit jet-wedge edge 
tones. The flow fields associated with the free shear layer tones induced in axisym- 
metric and plane air shear layers by a hot-wire probe and by a plane wedge were then 
explored experimentally, and found to be different in many ways from the widely 
investigated jet edge tone phenomenon. 

As many as four frequency stages have been identified, there being a fifth stage 
associated with the subharmonic attributed to vortex pairing in the free shear layer. 
No evidence of hysteresis could be found in the shear layer tone. In  the interstage 
jump (i.e. bimodal) regions, the tone occurred in only one mode at  a time while inter- 
mittently switching from one to the other. Frequency variations in each stage are 
shown to collapse on a single curve when non-dimensionalized with the initial mo- 
mentum thickness 8, or with the lip-wedge distance h, and plotted as a function of h/Oe. 

Phase average measurements locked onto the tone fundamental show that the 
phase velocity and wavelength of the tone-induced velocity fluctuation are essentially 
independent of the stage of tone generation; in each stage, both phase velocity and 
wavelength decrease with increasing frequency but undergo jumps at  starts of new 
stages. The measured amplitude and phase profiles, as well as the variations of the 
shear tone wavenumber and phase velocity with the Strouhal number, show reasonable 
agreement with the predictions of the spatial stability theory. The wavelength h 
bears a unique relation to h, this h, h relation being different from the Brown-Curle 
equation for the jet edge tone. 

Shear layer tones would be typically induced in near-field shear layer measurements 
involving invasive probes, and can produce misleading results. A method for deter- 
mining the true free shear layer natural instability frequency is recommended. 

1. Motivation and introduction 
1.1 .  Introduction 

The developing region of free turbulent shear layers is dominated by large-scale 
quasi-deterministic structures which play the key role in entrainment and noise 
production (Browand & Laufer 1975; Brown & Roshko 1974; Bishop, Ffowcs Williams 
& Smith 1971; Liu 1974). Even in the self-preserving region where much of the tur- 
bulent kinetic energy has cascaded down - through nonlinear interactions - from these 
large scales to smaller scales, the large-scale coherent structure is believed to play 
the major role in the transport of momentum, heat and mass. Characteristics and roles 
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of organized structures and conditions favouring their formation and sustenance are 
of fundamental importance in turbulent shear flows (Liepmann 1976, private com- 
munication; Roshko 1976; Kovasznay 1977). 

Some recent studies (Bradshaw 1966; Hussain & Clark 1977; Hussain & Zedan 
1978a, b )  show that the average measures of a free shear flow depend strongly on the 
initial condition, viz. the characteristics of the initial boundary layers producing 
these flows. (Thus it is likely that the large-scale organized structure in a turbulent 
free shear flow never achieves true self-preservation or local invariance in a finite 
flow length.) When the initial free shear layer is laminar, the wavelength of its most 
unstable mode, which depends on the velocity distribution, identifies the initial 
spacing of the rolled-up vortices and thus the initial large-scale size. However, these 
vortices may undergo interactions like coalescence (pairing or tearing) producing 
progressively larger scales of coherent motions (Brown & Roshko 1974; Winant & 
Browand 1974; Moore & Saffman 1975; Zaman & Hussain 1977). When the initial 
boundary layer is turbulent, its various integral measures like momentum thickness 
and shape factor, and turbulence characteristics like probability density and moments, 
Reynolds stress and spectra, may be taken as the identifiers of its initial condition. It is 
also possible that an initially turbulent free shear layer can roll up into organized 
large-scale vortical motions which then evolve not unlike the initially laminar case. 

Very little is known about the effects of the initial condition on the development of 
free turbulent shear flows (Kline et at. 1973; Hussain 1977) or about the effect of 
controlled periodic excitation on the near-field large-scale coherent structure of free 
shear flow (Crow & Champagne 1971; Hussain & Thompson 1975; Hussain & Zaman 
1977). This paper is an offshoot of our continuing investigation obtaining basic 
information in this area. 

While flow visualization can be highly effective in understanding qualitatively the 
large-scale coherent structures and their kinematics, a hot wire is the commonly 
employed tool for acquiring quantitative and accurate aerodynamic data. During 
hot-wire measurements of the natural roll-up frequencies of initially laminar free shear 
layers, in connexion with our study of controlled excitation of free jets (Hussain & 
Zaman 1975), we found that the measured roll-up frequency was a function of the 
streamwise distance of the hot wire from the lip (i.e. the separation point). As the 
probe was traversed downstream within the free shear layer, the frequency progres- 
sively decreased, followed by jumps at  intervals to higher values. Especially the latter 
feature, affirmed by repeated measurements, appeared inexplicable on the basis of 
any plausible shear-layer dynamics. Other authors have observed frequency de- 
pendence on x but attributed it to the Doppler effect or refraction effect of sound waves 
in the noise producing region (Winant & Browand 1974 ; KO & Davies 1971 ; KO & 
Kwan 1976). Neither of these effects could explain the apparent peculiarity of our 
data. Eventually, we established that the frequency variations observed by us were 
due to the edge tone effect of the hot-wire probe on the free shear layer. 

1.2. The edge-tone phenomenon 
When a thin slit jet impinges symmetrically on a plane wedge the resulting sound is 
called jet edge tone. The sound has interesting characteristics: the sound frequency 
spectrum has a strong peak; the peak frequency increases with decreasing jet-wedge 
distance h or with increasing jet speed U, followed by positive jumps, the regions 



The free shear layer tone phenomenon 351 

between jumps being called ‘stages’; there is a minimum value of h below which no 
edge tone occurs ; for a fixed h there is a minimum V, below which no edge tone occurs 
also; the interstage frequency jumps are associated with hysteresis, i.e. the jump 
frequencies depend on whether h or U, is increased or decreased; etc. 

The jet edge tone phenomenon was first reported by Sondhaus in 1854. Helmholtz, 
and Rayleigh, among others, also studied it, but it was Waschmuth who in 1904 first 
looked at  edge tone in the absence of a resonator. His interpretation was that the jet 
acted as a flexible rod pendulating on impact on the wedge and that the noise radiated 
from the wedge rather than the jet, probably owing to vibration of the wedge. Benton 
in 1912 demonstrated that wedge vibration was not necessary for edge tone production. 
Schmidtke in 1919 postulated the presence of Kitrmitn vortex st.reets along the sides 
of a wedge in stage I and between the jet and wedge in higher stages. Kruger, in 1920, 
was the first to try to explain the frequency jump as the consequence of the condition 
that the jet-wedge distance h be a multiple of the most unstable mode wavelength h 
of the jet. He also suggested that a compression wave travels back to the jet exit to 
maintain a self-sustained edge tone; this acoustic feedback concept was presumably 
shown to be erroneous by Richardson (1931)) who also inferred from his data that 
h/h = stage of the edge tone. Brown ( 1 9 3 7 ~ )  made a careful smoke visualization to 
provide probably the most comprehensive documentation yet of t’he jet edge tone 
flow, and derived the empirical (dimensional) formula for the edge tone frequency f, 

f = 0.466j(Ue-40) [(l/h)-0*07], 

where j = 1 ,  2.3, 3.8, 5.4 in stages I, 11, I11 and IV; U, is the exit velocity and h the 
jet-wedge distance (in c.g.s. units). Brown concluded that the stage I can occur simul- 
taneously with any of the other stages. In  his second paper, Brown (1  937 b )  emphasized 
the superficiality of the existing interpretations of the edge-tone mechanism and 
argued that at  low speeds the jet disturbance caused by the wedge was the controlling 
factor while a t  high speeds acoustic feedback from the wedge produced the edge tone. 

Curle ( 1  953) extended Kruger’s and Richardson’s ideas by postulating that the 
instability of the jet produces its pendulation, which in turn triggers separation 
vortices alternately on the two sides of the wedge. The circulation associated with 
these vortices induces coherent embryonic vortex formation back at  the jet exit; 
these vortices then grow owing to jet instability, thus providing the stable feedback. 
He rejected the role of fluid compressibility, and based on Brown’s (1937a) data he 
argued that the h-h relation, for the (integral) stage J of the edge tone, should be 

h/h = (J  + 1). 
Nyborg (1 954) developed a dynamical theory by assuming that the jet consisted 

of a streak of discrete particles under the action of a uniformly distributed transverse 
force field. The central hypothesis is that the transverse acceleration of each particle 
depends only on its distance from the jet exit and its instantaneous transverse displace- 
ment. The resulting integral equation for the jet displacement, even for simple choices 
of trial functions for the integrand, produced self-sustained oscillation solutions with 
realistic frequency variations and jet trajectories. This over-simplified theory, how- 
ever, fails to  predict when the frequency jumps will occur, and why there should be a 
lower limit of h for the exist,ence of edge tone. 
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Powell (1961 ) considered the edge tone phenomenon to consist of four simultaneous 
effects, the net transfer function for the stable feedback system being the product of 
the effectiveness of each. Each effect is represented as a complex gain factor having an 
amplitude and a phase change; for the case of stable self-excitation the total gain 
must be unity and the total phase change an integral multiple of 2n. Recognizing the 
complexity of the jet flow field, Powell used the Brown-Curle relation (2) as an in- 
dependent criterion to account for the flow field's part in the feedback control loop. 
He then developed a nonlinear gain criterion to explain the existence of the lower 
limit of the jet-wedge distance for edge tone production. This theory also explained 
multiple tones, frequency jumps and frequency hysteresis. 

Curle's hydrodynamic theory assumes that the vortex generated on each side of the 
wedge by the jet instantaneously triggers an embryonic vortex a t  the lip on the same 
side but of opposite sign. Nyborg's theory, however, is totally devoid of the flow 
physics and its limited success would appear to be fortuitous. Powell's theory differs 
from Curle's in that the feedback in the former is acoustic while it is hydrodynamic 
in the latter. Powell's theory has been regarded as probably the most rigorous. How- 
ever, the n + $ wavelength criterion used by Powell is arbitrary. The cornerstone of 
Powell's theory is the nonlinearity of jet disturbance while it can be argued that a t  
least for the first stage the nonlinearity may not be large. I n  spite of sustained efforts 
by these leading researchers, the jet edge tone theory is still unsatisfactory, indicating 
incomplete understanding of the phenomenon. 

Woolley & Karamcheti (1974) have attempted to show through their quasi-parallel 
flow instability computations that the non-parallel nature of jet flow can explain 
most edge tone characteristics. 

1.3. Motivation and objective 
After coming across the free shear layer tone phenomenon, we failed to  find any 
previous study of this phenomenon in the literature. The instability characterist,ic 
of these shear layers (Michalke 1965, 1972; Freymuth 1966; Hnssain & Thompson 
1975) associated with a top-hat velocity profile at  the jet exit are different from those 
of the slit jets with parabolic exit profiles (Sato 1960) used in conventional edge tone 
studies (Karamcheti et nl. 1969). I n  the jet-wedge edge tone, the jet impinges on the 
wedge symmetrically; there is lack of such symmetry in the shear layer tone. While 
Curle's (1  953) hydrodynamic theory is based on the symmetric vortex patterns on 
the two sides of a jet triggering vortices of opposite sign on the two sides of a wedge, 
the rolled-up vortices in a mixing layer are of one sign only. This suggested that the 
edge tone characteristics in a single free shear layer would be different from those 
in a slit jet: hence the motivation for this study. As we shall see, the shear layer tone 
has some similarities with the jet edge tone as well as some differences. Our detailed 
hot-wire measurements not only document this phenomenon but also shed further 
light on the jet edge tone phenomenon itself. 

There are numerous practical applications where the shear layer tone is of interest: 
these range from whistles; to holes in transonic tunnel walls; to cavities in various 
kinds of wind tunnels, in rocket motors, and in continuous lasers; to open cavities on 
flight vehicles, ships and submarines. I n  some of these, the shear layer tone pheno- 
menon can produce excessive noise or structural vibrations or heat transfer or drag. 
I n  the presence of a cavity, the shear layer tone is coupled with the cavity resonance; 



The free &ear layer tone phenomenon 353 

the free shear layer tone is not influenced by any such cavity resonance. To our 
knowledge, this is the first study of the free shear layer tone phenomenon. 

After the completion of this work, we became aware of two independent, contem- 
porary investigations (Bolton 1976; Sarohia 1977) of oscillation in flows over cavities. 
Bolton (1  976) has studied the excitation of a Helmholtz resonator jacket covering a 
circular orifice (cutout) in a turbulent pipe flow and inferred that the feedback across 
the cut-out is hydrodynamic. Sarohia (1977) has studied oscillation of laminar flows 
over cavities on slender axisymmetric bodies. Even though his study shows that the 
data are independent of cavity depth below a certain size, the acoustic modes and 
hydrodynamics in the cavity obviously play a significant role. Furthermore, his study 
is inherently different from ours, the former being influenced by multiple length scales 
associated with the slotted slender body. I n  spite of the configuration differences, the 
hot-wire based data of Sarohia provide some details of the local shear layer oscilla- 
tions; these data will be compared with ours whenever appropriate. 

2. Experimental apparatus and procedures 
The experiments were carried out in the free shear layers of a plane and a circular 

air jet facility, briefly described by Hussain & Clark (1977) and Hussain & Zaman 
(1975), respectively. A 2.54 cm diameter nozzle follows the 25.4 cm diameter settling 
chamber in the circular jet facility; t,he 140cm x 3.18cm plane jet follows the 
140 cm x 140 cm settling chamber. Both flows exit through perpendicular end plates 
and discharge in a large laboratory with controlled temperature, humidity and traffic. 
Data were obtained by standard hot-wire techniques employing constant-temperature 
(DISA) anemometers and 0.2 ern tungsten hot wires of 4 ,urn diameter. 

The hot wire traverses in streamwise (x), transverse (y), and spanwise ( z )  directions 
and yaw ( a )  were carried out through the action of stepping motors with resolutions 
of 0.00254 cm and 0.01", respectively, under remote manual and computer controls. 
Integral measures of the shear layer were obtained on-line with our laboratory 
minicomputer (HP 2100). A Spectrascope SD335 real-time spectrum analyser (with 
a maximum range of 0-50 kHz in 500 frequency lines) was used to obtain the spectra 
of the velocity signals; unless otherwise stated, each spectrum is an ensemble average 
of 128 successive realizations. The spectrum is displayed on the built-in scope and the 
amplitudes and frequencies of the spectral peaks were read directly with the help of a 
cursor to within k 0.1 yo full scale. Spectra presented refer to a one-dimensional longi- 

tudinal velocity frequency spectrum S,( f) defined such that f )  df = U2. A 

PAR 129A lock-in-amplifier was used to measure the amplitudes and phase variations 
of the shear tone induced velocity fundamental. 

For all measurements reported in this paper, the initial boundary layer was laminar. 
The boundary layer a t  0-3 cm before the lip (i.e. the separation point) was carefully 
traversed with the hot wire to record mean velocity and longitudinal fluctuation 
intensity profiles. The velocity fluctuations in this boundary layer were observed to 
be of fairly low frequency both by scope trace check and by spectral analysis; these 
can be traced to either settling chamber cavity resonance frequencies or blower bIade 
frequency. The fluctuation intensity profile was consistent with that of a time- 
dependent laminar boundary layer (Hussain & Clark 1977). The mean velocity profile 

!om 
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FIGURE 1. (a )  Schematic of the free shear layer, wedge and hot-wire probe arrangement; 
( b )  hot-wire probe tip details; (c) wedge details. Dimensions are in cm. 

shape factor was very close to the flat-plate laminar boundary-layer (Blasius profile) 
value of 2-59. Considering all these factors, we considered the initial condition to  be 
laminar. 

Figure 1 ( a )  shows schematically the flow and the probe orientation in the flow; the 
detailed geometry of the hot-wire probe used is shown in figure 1 (b) .  A 1.27 cm wide 
and 3.81 cm long, 20" sharp wedge (figure 1 c) was used to study the basic physics of 
the free shear-layer tone. 

Unless otherwise stated, all single probe data were taken with the probe (acting as 
the wedge) inclined at  an angle v, of 20" with the x axis (figure 1 a ) .  Most of the data 
reported here pertain to  the plane free shear layer of a plane jet with top-hat velocity 
profile, within one gap-width downstream. Eote that the jet exit centre has been 
conveniently chosen as the origin of the co-ordinates. Also note that while the stream- 
wise distance of the velocity measurement point is denoted hy x, the distance of the 
wedge-tip from the exit plane (lip) is denoted by h. 

3. Results and discussion 
3.1. Free shear layer tone induced by a hot-wire probe 

3.1.1. Frequency variation with the lip-probe distance. Figure 2 shows the one- 
dimensional frequency spectra of the longitudinal velocity fluctuation u determined 
by the hot mire placed a t  different axial locations x in the plane free shear layer. 
Only the single-wire probe as sketched in figure 1 (b)  was in the flow a t  the y location 
where UIU, = 0.95 (with a = 20'). With increasing hot-wire distance x from the lip, 



The free shear lager tone phenomenon 355 

I 3320 Hz .Y (cm) 

3820 

(1) 
0.737 
(ii) 
0.838 
(iii) 
0.940 

(vii) 
1.346 

(viii) 
1.448 

(ix) 
1,549 

(x)  
1.651 

x (cm) 3100 Hz 

(xi) 
1.753 
(xii) 
1.854 
(xiii) 
1.956 

( 4  
2.057 

(xv) 
2. I59 

(xvi) 
2.261 

(xvii) 
2.362 
(xviii) 
2.464 
(xix) 
2.565 

(xx) 

(XXI) 
2,769 
(xxii) 
2,972 
(xxiii) 
3,175 

2.667 

FIGURE 2. Longitudinal one-dimensional frequency spectrum Xu( f) of the signal from the hot-wire 
probe placed at different axial locations z in the plane free shear layer; U, = 37*2m/s. Hot-wire 
placed at the y location where U/U,  2: 0.95. Plots are on linear-linear scales; abscissa range for 
all the traces is 0-5kHz. Traces (vi)-(xxiii) have an identical vertical sca.le; with respect to this, 
the vertical scales for traces (i)-(iii) are magnified by a factor of 10 and thosc for traces (iv)-(v) 
by 104. 

the frequency decreases; in stage I, the spectral peaks, discernible for x 7 0.33cm, 
are of very low amplitudes and thus not shown. Figure 2 shows that the amplitude 
increases with x and reaches a maximum a t  x 2: 0.94 cm (in stage 11) before decreasing 
with increasing x. At x 2: 0.94 cm another peak at a higher frequency ji.e. stage 111) 
appears in the frequency spectrum. With further increases in x, the amplitude of 
the second mode in this bimodal region continues to grow while that of the first 
decreases, the frequencies of both, of course, decreasing progressively. The sequence 
of events repeats a t  larger x. After the fourth stage a subharmonic frequency appears, 
which overtakes the fourth stage in amplitude a t  x 2 2.46 cm. 

The peaks in the velocity spectrum gradually disappear further downstream ; the 
energy becomes distributed in frequency with gradual roll-off a t  higher frequencies, 
indicating progressive spectral broadening and randomization of flow fluctuations due 
to  the evolving turbulence through the (nonlinear) cascade process. 

The variation of the spectral peak frequency in the transverse direction was checked 
and found to remain essentially unchanged across the sheay layer width for a number 
of x stations. Constancy of the spectral peak frequency in y rendered subsequent 
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FIGURE 3. Variation of the longitudinal velocity U ,  total turbulence intensity ui and the shear 
layer tone fundamental (r.m.s.) amplitude u; as functions of normalized transverse distance y 
from the half-mean velocity point for the plane free shear layer at U, = 37.2 m/s. Mean velocity 
at: e, x = 0-25cm; A, x = 1-35cm; 4, x = 3.llicm; solid line through these data is the profile 
U/L', = 0,5-0.5tanh ((?j-yos)/28).-0-,u~/U,profileatz = 1~35cm.u;/U,profileatx = 1.35cm: 
-0-, data; ---, spatial stability theory (Michalke 1965). 

measurements easier because the transverse position of the probe or the wedge in 
the shear layer was not critical as far as frequency measurement was concerned. 

Figure 3 shows the longitudinal mean velocity distributions across the plane free 
shear layer for U, = 37.2 m/s a t  three streamwise stations. The antisymmetric profile 
UIU,  = 0.5 - 0.5 tanh ((y -yo 5)/20), used by Michalke (1965) and Freymuth (1966) for 
spatial stability calculations, is also plotted for comparison. The departure from 
antisymmetry of the plane free shear layer velocity profile was also observed by other 
investigators (Liepmann & Laufer 1947; Hussain & Thompson 1975). Especially, the 
lack of agreement of the data with the tanh-profile a t  the low-speed side can be 
attributed to a number of factors: large hot-wire errors a t  low velocities due to large 
fluctuation intensities and the transverse velocity, and the inherent changes in the 
profile due to  its being in a state of relaxation from the boundary layer to  the free 
shear layer profile. 

Note that if U / U ,  were plotted as a function of y - yo.5 non-dimensionalized by the 
shear layer vorticity thickness 

a better congruence of the mean velocity profiles would be obtained (Hussain & 
Thompson 1975). Since the instability of the shear layer is sensitive to the profile 
details near the location of mean vorticity maximum (at UIU, = 0.5), the vorticity 
thickness 8,, being determined by the profile a t  that  location, is a more appropriate 
length scale than an integral length scale like the momentum thickness 8. However, 
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FIGURE 4. Axial variation of the probe-induced instability frequency of the plane free shear layer at 
different 77,: 0, 43.3m/s; V, 37.2m/s; @,32.0m/s; A, 28.7m/s; 0,21.6m/s.  ForU, = 37-2m/s, 
the stages of the shear layer tone are indicated. 

owing to differentiation of discrete data across a very thin layer, 6, would have a larger 
uncertainty. For this reason as well as because of its widespread use by researchers 
in shear layers, the momentum thickness 0 has been used as the length scale in figure 
3. The r.m.s. total fluctuation intensity profile a t  x = 1.35cm is also shown in this 
figure; note that the peak of the intensity u ’ /q  occurs a t  the location of maximum 
of slope ( a U / d y ) ,  where fluctuation production - p G a U / a y  will be the highest. 

The fundamental r.m.s. amplitude profile $(y)/Ue a t  x = 1.35 cm is also shown in 
figure 3; the minimum amplitude is consistent with the Kelvin’s cat’s-eye type flow 
associated with the motion of a vortex train over the hot wire. The theoretically 
predicted amplitude variation according to the spatial theo;.y of Michalke (1 966) is 
also shown for comparison. The agreement on the location of zero amplitude is 
impressive; however, the amplitude variations away from this location do not agree. 
Similar data by Freymuth (1966), and Hussain & Thompson (1975) showed much 
closer agreement of the amplitude data with the theory, but the Strouhal numbers 
used by them were much lower. 

The disagreement between the data and the theoretical predictions could be due to a 
variety of factors: the mean velocity profile does not agree with the tanh-profile used 
in the theory; the flow is not parallel; there is a noticeable level of free-stream tur- 
bulence uz/Ue = 0.003; the theory is for infinitesimal (linear) disturbances while t,he 
velocity fluctuations involved in the shear layer tone are indeed large-amplitude 
(nonlinear). Another factor which will introduce some artifact in the data is inherent 
in the method of acquisition of these data. The probe, acting as the wedge, was also 
traversed in y in order to take the data. While this does not introduce any shift in 
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frequency or wavelength, it would affect the measured amplitude distribution sonie- 
what. 

The fact that hot wires, as well as Pitot probes, have been used in free shear layers 
in many investigations and that no previous investigator has reported probe-induced 
edge tone effect, which can significantly alter not only the instability frequency but 
also integral measures of the shear layer, prompted us to document the effect further. 
The frequencies of the spectral peaks (similar to those shown in figure 2) as the probe 
is moved downstream along the line with UIU, = 0.95 in the plane free shear layer a t  
five speeds, including the V, = 37.2m/s case of figure 2, are shown in figure 4 as a 
function of the axial distance x of the hot wire, Note that around each frequency 
jump, there is an overlap region in which two spectral peaks occur. The overlap 
regions for the U, = 37*2m/s case have been extended on either side of each jump 
(figure 4) as long as the smaller frequency spike could be distinguished from the 
background turbulence. For clarity, these overlaps for the other four speeds have 
not been shown; in each overlap (i.e. bimodal) region, the mode that has the higher 
amplitude of the two was chosen, thus defining an unambiguous jump frequency. Note 
also that with decreasing speed, the shear tone effect becomes irregular (discussed 
later). 

The Roman numerals on this plot, shown only for the U, = 37.2 m/s case, indicate 
the stage of the tone, consistent with the nomenclature introduced by Brown (1937a). 
Data on the lower right-hand side of the plot (stage V) represent the subharmonic 
frequencies. The subharmonic amplitude gradually decreases with increasing x until 
it is submerged in the evolving background turbulence. 

( a )  Subharmonic frequency. No jet edge tone study has reported subharmonic 
formation. The occurrence of the subharmonic frequency observed in this study at  
all speeds is consistent with the phenomenon of vortex coalescence, which has been 
the subject of extensive, recent research (Winant & Browand 1974; Brown & Roshko 
1974; Hussain & Zaman 1975, 1977; Browand & Weidman 1976; Zaman & Hussain 
1977). A shear layer undergoes inviscid instability owing to the inflexional profile; the 
disturbance grows downstream, saturates by nonlinearity and the flow rolls up into 
spanwise vortex rolls. Such a vortex row is unstable (Lamb 1945); any non-uniformity 
in the spacings or strengths of two (or three) adjacent vortices cause them to coalesce 
(pair up) and form a larger vortex. Even though the details of the phenomenon of 
pairing is not yet well understood (Moore & Saffman 1975; Corcos & Sherman 1976; 
Roshko 1976; Zaman & Hussain 1977), it appears that interactions like coalescence 
of large-scale coherent structures play the key role in the evolution of these structures 
in free shear layers as well as jets, wakes and evec, turbulent boundary layers. 

It is remarkable that the organization of the flow due to edge tone feedback brings 
out the subharmonics associated with vortex coalescence which otherwise would occur 
randomly in space and time and thus would not be clearly discernible from the velocity 
spectrum in a free shear layer without any edge or external excitation. After the 
occurrence of the first subharmonic starting at x 2: 1.5cm in figure 2, note that 
another (broader) peak a t  half this subharmonic frequency arises a t  x N 2.5cm, 
suggesting a second stage of vortex coalescence. The occurrence of the vortex pairing 
(or tearing) ahead of the wedge would imply that only the coalesced vortices impinge 
on the wedge and thus provide feedback a t  the lip only a t  alternate periods of the 
shear layer unstable mode. Such alternate feedback, along with the fact that the 
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FIGURE 5. Axial variation of the probe-induced instability frequency for the axisymmetric 
free shear layer a t  different U,: 0, 46,0m/s; 0 ,  40.2m/s; V, 36.7m/s. 

subharmonic occurs a t  large lip-wedge distances h,  would suggest that the effect of 
the feedback at the lip would be inherently weak, and thus would produce some jitter 
in the location of its nonlinear saturation and roll-up, as well as in periods of impinge- 
ment on the wedge. This would explain why the peaks at the subharmonic frequen- 
cies in figure 2 are weak and broadband. We have shown in separate studies (Hussain 
& Zaman 1975, 1977) ’by both hot-wire measurements and flow visualization that 
vortex pairing, w-hich otherwise occurs randomly in space and time, can be organized 
and accentuated by controlled excitation at  appropriate Strouhal numbers. Specific- 
ally, in the ‘shear layer mode’, the pairing occurs a t  a Strouhal number St,, = 0.011. 
The present study shows that the fundamental Strouhal number, St,, = 2ft ,  Oe/lJ$,,  for 
the shear layer under tone to produce subharmonics is about 0.0118; fv is the sub- 
harmonic frequency in stage V in figure 4. This lends further credence to the view that 
stage V is due to vortex coalescence in the ‘ shear layer mode ’. 

( b )  Axisymmetric free shear layer. To further confirm that the hot-wire probe 
produced the shear-layer tone, similar hot-wire spectra measurements were taken in 
the free shear layer of a 2.54 cm diameter circular jet a t  three speeds; the ratio DIO, 
being large, the curvature of the axisymmetric configuration should not be of any 
significance. Frequency vus. axial distance curves for three speeds are plotted in figure 
5 .  Note that a t  the locations of jumps, overlap regions exist but the overlap frequencies 
have been omitted by following the same procedure as for figure 4; evidence of 
coalescence resulting in a subharmonic peak was also found in these data but has 
not been shown in this figure. As expected, all axisymmetric free shear layer tone 
data are similar to those in the plane mixing layer and thus are not shown further 
on. 



3 60 A .  K. ill. P. Hussnin and K .  B. ill. Q .  Zaman 

( a )  , 4320 H z  

3990 
(iii) 40.9 

( iv)  39.5 
( v )  38.1 

(vi)  36.9 

2810 
(vii) 35.7 

(vi i i )  34.3 3380 

(ix) 32.7 

I 

4.5 

4.0 

3.5 

2.0 

1.5 

1 .o 

FIGURE 6. ( a )  Spectra SJf) of the velocity signal in the plane free shear layer at different U,. 
Hot wire was placed at  s = 1.016 cm; its transverse locationwas adjusted to keep it at U/U,  N 0.95. 
Plots are on linear-linear scales. -4bscissa range is 0-10 kHz for trace (i), 0-2 kHz for traces 
(xvii) and (xx-iii), and 0-5kHz for the rest.. Vertical scales are arbitrary. ( b )  Variation of 
the plane free shear layer tone frequency with U, for s = 1.016cm; circular data points are for 
increasing Ti, and triangular data points for decreasing Up. 
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3.1.2. Variation of frequency with jet exit speed. Variation of the tone frequency f 
wit'h U, is shown wit.h the help of u spectra plots in figure 6 (a). Trace (i) of figure 6 (a) 
confirms that there is no conspicuous spectral component ot,her than the tone frequency 
while the last two traces show the details cf the low-frequency spectral content. The 
discussion of the sequence of events with decreasing U, is similar to that with increasing 
h (figure 2 ) .  

At lower speeds, the clear sharp spikes that characterized the spectra at  higher 
speeds degenerate into a band of small-amplitude spectral components many of 
which could be attributed to the characteristics of the jet flow facility, such as the 
setbling chamber resonance, the blower blade passage frequency (172 Hz), etc. These 
spect,ral peaks become comparatively significant at  lower U, and thus discouraged 
exploration of stage I at  still lower U,, as well as of the lowest speed qmln that can 
produce shear tone, at  each h. This facility constraint makes it difficult to identify 
tone frequencies a t  low U,, a possible factor for irregular f (x) data at low U, (figure 4). 

The probe-induced shear tone frequencies from figure 6(a) and from spectra at  
int'ermediate speeds are plotted in figure 6 (6)  as a function of exit speed U,. The circles 
in figure 6 (b) show data obtained when Ti,  was increased; the triangular data points were 
obtained with the speed decreasing. The vertical dashed line locates the jump from 
stsage I11 to 11, identified in the same way as for figure 4. The jump from stage I1 to I 
is not, shown as the study could not be extended to still lower U,, for reasons explained 
earlier. 

3.1.3. The efective wedge on the probe body. Having discovered the principal symptoms 
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FIQURE 8. (a) Velocity fundamental amplitude u;/Ue as a function of speed 77, for cylinders of 
different diameters d :  V, 0.635cm; 0, 0.315cm; a, 0.198cm; 0, 0.165cm; 0,0.091 cm; hot wire 
located at U/U,  = 0.10. (b )  u;/U, as tt function of hd/8:: A, U, -1 43.3m/s, h/O, = 115; 0 ,  
u, = 37.2 m/s, h,/8, = 112; hot wire located at  U/U,  = 0.20. 

of the free shear layer tone, we wanted to determine the part of the probe support 
that acted as the effect<ive wedge. From the sketch of the probe in figure 1 ( h ) ,  edges 
1 and 2 appeared possible candidates. We found that slight changes in the shape of 
edge 1, made by wrapping a cellophane tape around it, significant'ly changed the 
shear tone frequency while similar changes in edge 2 produced no effect. This strongly 
suggested that edge 1 on the probe support was acting as the wedge. 

The location of the effective wedge on the probe was further confirmed by putting a 
20" wedge in the flow (figure l c ) ,  and measuring the frequency variation of the 
resulting tone with axial distance h of the wedge. The frequency as a function of h 
(for the plane free shear layer at  U, = 37.2 m/s) is plotted in figure 7; the hot wire was 
always a t  U/U, = 0.20 with a = 60" so that only small parts of the prongs were in the 
shear layer. The axial location of the hot wire was immaterial because for a fixed 
location of the wedge, the frequency was the same everywhere. The hot-wire probe 
induced shear layer tone data are replotted in figure 7 by shifting the data from figure 
4 (for U, = 37-2 m/s) to the sight by 0.737 cm, the length of the prongs, so that h now 
represented the distance of edge 1 from the lip. Probe induced shear tone data, thus 
shifted, agreed with the wedge data most closely (figure i '), confirming that edge 1 
caused the shear tone. 

However, the frequency variations in stages I11 and I V  for the probe case and the 
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wedge case remain different. It was observed that the third and fourth stage tones 
for the wedge case were ‘distorted’ and the spectra contained noticeable higher har- 
monics of the shear tone fundamental frequency. In stages I and 11, however, the 
velocity spectrum had a single, distinct peak. The differences between the frequency 
variations for the probe and the wedge in the third and fourth stages remain un- 
explained, the differences in the shapes and sizes of the two may be the reason. 

Note that equation ( 1 )  based on the slit-jet edge tone does not represent the 
frequency variation in a shear tone as shown in figure 7.  The data of Xarohia (1977) 
are also shown for comparison. 

3.1.4. Probe size eflect. The question naturally arises as to the effect of the probe size 
and orientation on the shear tone. Limited experimentation was undertaken on this 
question. Cylinders of different diameters d were held in the shear layer with the 
axis aligned with the downstream direction along the U/U,  N 0.5 line; the leading 
end of each cylinder was machined square to its axis. The tone induced velocity 
fundamental amplitudes u;/U, as a function of U, are shown in figure 8 ( a )  for different 
d .  These data were taken with the cylinder held at  fixed h = 1.6 cm and the hot wire 
placed at the fixed location x = 0*5h,  U / U ,  = 0.10 and a = 60”. All the data in this 
figure correspond to stage I1 of the shear layer tone. Clearly, the tone strength in- 
creases with cylinder diameter. Since tone induced velocity amplitude should also be 
a function of both h and 6,’ it  appears reasonable to arrive at  a size criterion by plotting 
u;/U, as a function of hd/O;. Such a plot is shown in figure 8(b)  for two speeds; the 
corresponding values were chosen such that the tone in each case was in stage I1 and 
produced the largest velocity amplitudes u;/U,. Even though the length scales are 
combined as hd/8,2, h/8, being nearly the same, i.e. 11 2 and 1 15, this figure essentially 
gives the dependence of u;/7& on dl8,. 

Figure 8 (b)  shows that the shear tone velocity amplitude increases rapidly with d 
above d 2: 58,, reaching a maximum at d 2: ZOO,, above which the amplitude is 
essentially independent of d.  However, far very large diameters, i.e. for d 500,’ the 
flow upstream was observed to be grossly disturbed. (Note that data in figure 8(b )  
were taken with the hot wire located a t  UIU, = 0.20, thus explaining the different 
u;/Ue for the two figures, 8 ( a )  and 8(b) . )  For d 2 58, yaw of the cylinder did not 
increase the minimal upstream influence at  these sizes. From the above, it would 
appear that cylinders of diameters below 56, are safe for avoiding free shear layer tone. 

3.1.5. The most sensitive disturbance frequency for a shear layer. The sharp peaks in 
the hot-wire signal spectra disappear when the probe is moved to the outskirts of the 
shear layer. Figure 9 shows frequency spectra plots with the hot wire placed at  the y 
location where U / U ,  N 0.10, with a = 60°, so that the front end of the probe stem 
did not intersect the shear layer. The diameters of the prongs being about 3-58,, the 
disturbance due to the prongs was insignificant. Although there is no sharp peak in 
these plots, there is an unambiguous hump in each, the peak frequency of which 
remains constant within an axial distance in which at least two tone stages (with sharp 
spectral peaks) would be found if the probe support were in the shear layer, The 
broadband humps can be explained by the argument that, although there is no 
controlled external disturbance, there exists the ‘white ’ background noise from which 
disturbances with frequencies in the unstable band are picked up and appropriately 
amplified by the shear layer. The peak of these humps should represent the most 
sensitive frequency. Figure 9 thus shows that the plane free shear layer under study 
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FIGURE 9. Spectra S, , ( f )  of the velocity signal at different z in the plane free shear layer; U, = 37.2 
m/s. Probe axis makes an angle of 60" with the jet axis and the transverse location of the hot wire 
a t  each z is adjusted to keep it a t  U / U ,  N 0.10. Plots are on log-linear scales; abscissa range is 
0-5 kHz and ordinates are arbitrary. 

is most sensitive at  about 3280 Hz when C: = 37.2 m/s. This frequency is also midway 
in any stage of shear tone frequency variation with x at  U, = 37.2 m/s (figure 4). As 
shown in figure 2, the amplitude of the shear tone spectral component in any stage 
reaches its maximum near the middle of the stage. For V, = 37*2m/s, maximum 
shear tone induced velocity amplitude was measured at  f = 3280Hz. Thus the 
amplitude of the shear tone is the largest when the tone frequency is the same as the 
most unstable frequency of the free shear layer. 

We thus conclude that data on the sensitivity of shear layers to external disturbances 
should be obtained with the probe placed such that no sizable part of it intersects 
the shear layer. A sharp peak in the spectrum of the velocity signal from a hot wire 
in a thin shear layer should be interpreted with caution. The frequency of the probe 
induced tone may differ significantly from the natural roll-up frequency of the shear 
layer; note that the spectral peak frequency varies from about 2900Hz to 3900Hz 
for U, = 37*2m/s depending on the probe location (figure 7) while the instability or 
natural roll-up frequency is 3280 Hz. The occurrence of a shear tone can also noticeably 
alter the mean shear layer characteristics as well as its coherent structure and thus its 
subsequent evolution. One way of avoiding shear tone would be, of course, to employ 
non-invasive measurements like laser-Doppler velocimetry ; in this case, however, 
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apart from the space and price limitations, the large scatter volume would not provide 
shear layer data with fine spatial resolution. The probe induced shear tone itself, 
however, can be put to use in determining the most unstable frequency of the shear 
layer. This can be achieved by changing the probe position in x and identifying the 
location, and thus the tone frequency, a t  which the velocity fluctuation amplitude 
becomes largest. 

3.2. On the aspects of free shear layer tone phenomenon 
3.2.1. Near-parallel shear $ow theory. The lineal hydrodynamic stability theory for 

the propagation of small amplitude disturbances in a parallel shear flow predicts that 
the frequency of a normal mode experiencing the maximum amplification in a given 
shear layer is unique. However, owing to viscous diffusion of vorticity (i.e. laminar 
entrainment), free shear layers are not parallel; when the non-parallel effect is taken 
into account, a continuous decrease in the frequency of the most sensitive mode with 
increasing x is predicted (Woolley & Karamcheti 1974; Ling & Reynolds 1973). 
Clearly, the frequency of such an instability mode a t  any streamwise location scales 
with the local shear layer thickness, which can be characterized by the profile width 
B = yo.95 - yo.1, or the momentum thickness 

6 = / o ; ( U / a  (1 - U/U,)dY 

or the  vorticity thickness S,, each of which continuously increases downstream; yo 95 

and yo.1 are the locations a t  which U/U, is 0.95 and 0.1, respectively. Thus when either 
B or I3 or 6, is used as the length scale, there should be a continuous decrease of the 
' most unstable ' frequency in the downstream direction. 

Woolley & Karamcheti (1 974) have shown that some of the main features observed 
in jet edge tone, such as decreasing frequency with increasing jet-wedge distance, can 
generally be explained by the non-parallel effect. However, they have not addressed 
a major feature of edge tone, namely the frequency jumps. If non-parallel flow theory 
were to explain the decrease in frequency with axial distance in edge tone, the local 
shear layer thickness would be the relevant length scale governing the instability 
mechanism, since the characteristic velocity scale U, remains unchanged. Thus the 
Strouhal number based on B, I3 or 6, should be expected to have a similar functional 
relationship in the different stages of edge tone operation. The following data clearly 
indicate that such is not the case. 

For U, = 37.2 m/s, the streamwise variations of the plane free shear layer momen- 
tum thickness 0 and vorticity thickness 6, were obtained from mean velocity profile 
traverses with the help of the on-line laboratory minicomputer. Figure 10 shows the 
variations of I3 and 6, with x as obtained from the mean velocity profiles by traversing 
the single-wire probe only. I n  such measurements the effect of the transverse com- 
ponent of the mean velocity on the zero-speed side of the free shear layer introduces 
error. Instead of adopting any correction procedures - which are all questionable - to 
smooth out the zero-speed side tail of the mean velocity profile, we truncated the 
integration for 0 a t  U/U, = 0.1. The vorticity thickness measured on the basis of the 
maximum slope of the mean velocity profile by least-squares fit of a straight line 
passing through four data points around the half mean velocity point is unaffected 
by this truncation. However, 0, being an integral quantity, exhibited much lower 
uncertainty compared with 6,; the uncertainty in the latter was _+ 5 %. 
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Also included in figure 10 is the streamwise evolution of the ‘free shear layer shape 
factor’ S,/6 which has a value of about 5 for x/6, < 80, but about 4 for larger values 
of .lee. This abrupt change in S,/O (at x 21 1.2 cm) should indicate an inherent change 
in the velocity profile, i.e. a sudden widening of the shear layer, and thus may indicate 
the location for roll-up of the free shear layer. The flow dynamics of the free shear 
layer before and after the roll-up are quite different; larger entrainment (i.e. entrap- 
ment) can be expected after roll-up. Since d6ldx is the entrainment velocity divided 
by U,, the higher de/dx beyond x N 1.2 cm in figure 10 does indeed suggest an inherent 
change in the shear layer structure and dynamics. We are studying further details 
through visualization. The oscillations in 6(x )  indicate effects of successive stages 
of the tone on shear layer entrainment a t  0.75cm ahead of the wedge. The average 
value of dS/dx = 0.048 is higher than Sarohia’s (1977) values ranging up to 0-022. 
The value of d6/dx in the self-preserving region of a shear layer was found t o  be 
0.035 by Liepmann & Laufer (1947). Hussain & Zedan (1978a, b )  foundd6/dx to vary 
over the range 0.028-0.035 depending on the initial condition. It is not unreasonable 
to expect a shear layer under tone to manifest a larger d6ldx than the corresponding 
unperturbed free shear layer. This difference may also be partly due to the fact that 
6(x) in figure 10 does not represent streamwise variation of 6in a particular shear layer 
under tone with a fixed wedge but successive 6(x) in front of the wedge as i t  is moved 
downstream. Further, the free shear layer adjacent to the lip here is far upstream 
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from the self-preserving region studied by Liepmann & Laufer (1 947) and Hussain & 
Zedan (1978a, b ) .  

The data of figure 10 coupled with the frequency data of figure 4 (for U, = 37.2 m/s) 
were used to obtain local Strouhal numbers based on 8 and 6,. The variation of St, 
in the different stages is shown in figure 11. The plot of St,, us. x is similar to that of 
St, us. x and thus not shown. 

Figure 11 shows that St, (and thus St,,) does not remain constant in a stage. I ts  
functional dependence on x is different in different stages; St, and St,, vary much 
less in the first two stages. These variations lead us  to believe that the instability 
mechanism in free shear layer tone does not scale an its local characteristic length 
scale only and thus it would appear that near-parallel flow theories alone cannot 
explain the pattern of frequency variation even in one stage of operation. Other length 
scales such as the lip-wedge distance h, and time scales like h/LL, vortex transit time 
from lip to wedge, disturbance feedback time from wedge to lip etc. must also be 
considered. 

3.2.2. The amplitude variation in the different stages. All the following data pertain 
to the tone in the plane free shear layer created by the wedge as described before 
(figure 1). The audio tone produced by the wedge was much louder than that produced 
by the probe. The vortex formation a t  the tip of the wedge is two-dimensional and 
the vortex will be stronger for the wedge than for the probe. These, together with the 
fact that the wedge has a larger surface area would explain the louder tone produced 
by the wedge. The lip-wedge distance being much smaller than the sound wavelength, 
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the edge tone phenomenon is indeed a near-field effect and thus would depend on the 
shape and size of the wedge. The loudness of the tone was also extremely sensitive to 
the transverse location of the wedge in the free shear layer. The tone was loudest when 
the wedge was placed approximately a t  the half mean velocity point in the shear 
layer. Slight transverse displacement of the wedge from this point would make the 
audio tone strength drop drastically. The peaks in the u spectrum, however, could be 
clearly identified even when the tone could not be heard. 

In  the available literature on jet edge tone, hysteresis around frequency jumps had 
been observed to be a universal characteristic of the edge tone phenomenon (Brown 
1937a; Curle 1953; Powell 1961; Karamcheti et al. 1969). That is, the transitions 
shown by the dotted lines in figure 4 and locations of frequency jumps in figure 6 (b) 
would be different when the value of the independent variable - either h or U, - is 
increased, as opposed to the case when it is decreased. In the probe-induced shear 
tone data, however, we could not find any evidence of hysteresis in the overlap 
regions; careful repeats confirmed this observation. Multiple modes as shown in figures 
2 and 6 (a) were not associated with hysteresis, i.e. the relative amplitudes remained 
the same whether the speed U, was being increased or decreased. Figures 12 
and 13 not only demonstrate the non-existence of hysteresis in shear layer tones 
produced by the wedge but also throw further light on the physics during the 
frequency jumps. For brevity, probe-induced tone velocity amplitude variations 
with h or ri, are not shown. 
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hie. 

FIGURE 13. Variation of the r.m.s. amplitude of the plane shear tone velocity fundamental with 
axial distance h of the wedge: (a)  the probe moved with the wedge, being held a t  a fixed distance 
0-16 cm in front of the wedge; ( b )  the probe was fixed at  a point (z = 0.25cm and UIU, N 0.95) in 
the flow. The solid data points were obtained while h was being decreased and the open ones 
while h was being increased. 

The r.m.s. amplitudes of the shear layer tone spectral components as a function 
of the exit speed U, for two wedge locations are presented in figure 12. The hot wire 
was placed between the lip and the wedge, at  a fixed location (different for the two 
cases) and a t  a = 60" so that the probe body itself produced no interference. The 
solid data points in this plot represent those obtained while V, was being increased 
and the open data points were obtained while U, was being decreased, each run lasting 
about an hour. The stages indicated in the figure were determined from cross-plots 
of the associated frequency data as a function of the non-dimensionalized axial 
distance h/8, (see Q 3.2.4). 

Figure 12 shows that the amplitudes of the spectral components a t  any exit speed 
are functions of the lipwedge distance h and, except for the unavoidable scatter in 
the data, are unique functions of the exit speed U, itself, regardless of whether U, 
was increased or decreased; thus no evidence of hysteresis was observed. 

The differences between the amplitude distributions for the probe- and the wedge- 
induced velocity fluctuations provide interesting insight into the shear tone pheno- 
menon. Unlike the case of the probe-induced tone, where the frequency overlap region 
covers a reasonably large range of U, (figure 6 b ) ,  the transition between the stages 
for the wedge case occurred rather abruptly and it was difficult to capture both spectral 
peaks simultaneously in the velocity spectra. This can be explained by the possibility 
that the sharp-edged plane wedge produces well-defined, stronger (smaller cross- 
section) vortices and produces a stronger sound (owing to larger surface area), so that 

'3 FLM 87 
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the feedback is stronger and there is less ambiguity in the selection of the tone wave- 
length or frequency. However, with very slow change in the velocity U, we could 
obtain values of U, a t  which two modes occurred intermittently and the resulting (128 
ensemble averaged) spectrum exhibited the two peaks corresponding to the two stage 
frequencies. Careful observation of the scope trace revealed that the signal frequency 
changed intermittently from one value to the other, and that they never occurred 
simultaneously. Observations of the ‘real time spectra ’ (i.e. single realizations of the 
frequency spectrum) clearly showed that the velocity spectrum had only one peak for 
each realization while a large ensemble average contained both the peaks. Our observa- 
tion that the shear tone in the overlap region occurs in one mode only at a time con- 
tradicts other investigators’ results that both modes in an overlap region of jet edge 
tone occur simultaneously (Brown 1937a; Powell 1961; Bilanin & Covert 1973; 
McCanless & Boone 1974). However, Sarohia’s (1977) observation agrees with ours. 

The amplitude distribution in the different stages of the shear tone as a function of 
axial distance h is shown in figure 13. The two sets of curves represent the following 
two cases: (a )  the hot wire was placed a t  a fixed distance 0.16 cm ahead of the wedge 
and moved along with the wedge; ( b )  the hot wire was fixed in the flow at x 2: 0.62 cm 
and UIU, 2: 0.95 while the wedge was traversed in x. Amplitudes for up to the third 
stage have been documented. I n  this figure, the solid data points represent those 
taken while h was being decreased and the open data points represent those while h 
was being increased, the run for each of the two cases lasting approximately an hour. 
The data for both forward and backward movement of the wedge, for both the cases 
shown, again follow the same smooth curves and no evidence of hysteresis could be 
found. 

Powell’s (1961) theory predicted that the hysteretic jumps in slit-wedge edge tone 
resulted from nonlinearity associated with the large amplitude fluctuations in the 
edge tone flow. During transition, a harmonic content in the established motion in a 
stage was presumed to provide stimulus for a jump to the next stage and a distinct 
jump thus occurring would ‘more likely than not’ be hysteretic. The non-occurrence 
of hysteresis in our study is currently being further investigated. Sarohia (1977) 
found no evidence of hysteresis in his configuration also. 

The relatively higher amplitudes in figure 13 (a) are due to the axial growth of the 
disturbances as the probe is moved in the axial direction. Note that amplitude varia- 
tion in any stage in case (a) is not only due to  the tone frequency falling near the most 
sensitive disturbance frequency (which receives maximum amplification) of the shear 
layer but also due to the fact that with increasing location x of the hot wire, disturb- 
ances are allowed to grow to larger amplitudes. Case ( b ) ,  where the probe has been 
held at a fixed point in the flaw field, thus more truly represents the growth and 
decay of the shear tone flow oscillation amplitude, depending on whether the tone 
frequency is approaching or receding from the most sensitive disturbance frequency 
of the free shear layer as the wedge is traversed in x. From the streamwise distribution 
of the shear layer tone induced amplitudes (not presented), we have found that the 
amplitude increases in x nearly exponentially, Lseaching its maximum a t  about 
x = 0.85h from the lip before decreasing again. This would explain why case ( b )  above 
should produce lower amplitudes (see figure 13). 

As the wedge was moved upstream very close to the lip, the spectral peak component 
r.m.9. amplitude progressively decreased (the frequency, of course, changing simul- 



The free shear layer tone phenomenon 37 1 

taneously) until it became submerged in the background turbulence. Although the 
amplitude variation at the beginning of stage I in figure 13 is monotonic, the sharp 
drop in the amplitude (as h is decreased) indicates the existence of a minimum lip- 
wedge distance hmin, at each U,, for the tone to occur. 

Likewise in figure 12, the inter-stage transitions in figure 13 occurred over a small 
distance unlike the case in probe induced edge tone (not shown). Even thoJgh the 
ensemble averaged spectrum showed peaks corresponding to both the stages during 
transition, careful scrutiny revealed that the edge tone occurred in only one made at a 
time while intermittently switching between the two stages. It is to be noted that the 
subharmonic spectral peaks shown in connexion with the probe induced edge tone 
did not occur in a similar ‘one or the other mode’ with the fundamental edge tone 
component. The oscilloscope trace indicated that the signal constituted alternately 
stronger and weaker wave crests at the period of the fundamental thus producing 
the subharmonic spectral peak. A subharmonic in a spectrum in these situations has 
been shown to be associated with vortex coalescence (Zaman & Hussain 1977) and 
thus the generation of the subharmonic further downstream in the flow is due to vortex 
pairing in the free shear layer. Higher harmonics in the spectra of the wedge-induced 
tone velocity signal in stages I11 and I V  resulted from the large-amplitude distorted 
wave form; these spectral peaks at higher frequencies have no physical significance. 

3.2.3. Spanwise extent of shear layer tone. The presence of the 1-27 cm wide wedge in a 
plane free shear layer of 140 cm span raised the question as to whether the wedge was 
introducing instability over the entire span of the shear layer. Thus it was necessary 
to determine the spanwise extent of the wedge-induced shear layer tone. The hot 
wire was traversed in the spanwise direction at constant x and y keeping it at 

U/U,  = 0.20, a = 60°, for U, = 37*2m/s, h = 1.6cm. 

The spectra of the velocity signal for different spanwise positions of the hot wire 
relative to the wedge were obtained. It was found that far a fixed wedge location, the 
tone frequency did not vary in the spanwise direction. The shear tone induced velocity 
amplitude decreases rapidly in z away from the wedge, reaching half and one-quarter 
of the peak value at  z = 2 and 4 em, respectively. The tone spectral peak is essentially 
lost at a distance z = 10cm, which is considerably shorter than the 140cm span of 
the plane free shear layer. Thus, the wedge did not precipitate instability of the shear 
layer over its entire span; the observed shear layer tone phenomenon is clearly a 
localized event. 

3.2.4. The characteristic length scales of the phenomenon. The non-dimensional 
frequency St,( = fh/U,) is plotted in figure 14 as a function of h for four different 
cases. For the two constant h cases, data obviously fall on vertical lines while for the 
other two cases, St, can be found to increase nearly linearly with h. The shear layer 
tone data thus differ from the slit-wedge edge tone data of different investigations, 
where St, has been observed to remain constant in each stage, the values being approxi- 
mately 0.5, 1.1 and 1.7 in stages I, I1 and 111, respectively (see Karamcheti et al. 
1969). 

The differences between the present data and the jet edge tone data are not un- 
expected because of the differences in the velocity profiles; the latter studies involved 
slit-jets with fully developed laminar channel flow (parabolic) profile at exit, while the 
plane free shear layer has an error function type profile (figure 3). The instability, 

13-2 
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FIGURE 14. Strouhal number St, ( = f h/ U, )  of the wedge-induced plane free shear layer tone as 
function of the lip-wedge distance h : A, variable h at U, = 43-3 m/s; m, variable h at U, = 29.3 m/s; 
0, variable U, with h = 1.22 cm; 0, variable U, with h = 1.83 cm. 

roll-up and the disturbance growth in x in the two cases are different. Apart from the 
imposed length scale h (the slit-wedge distance), the length scale associated with the 
instability mechanism for slit-jets is the slit width H ,  while such a configuration- 
imposed length scale does not exist in the free shear layer. Thus it is to be expected 
that the slit-wedge edge tone frequency variation data will collapse on the same 
horizontal line for a particular stage on a St, vs. h / H  plot; on the other hand, since H 
is no longer a length scale in a free layer tone, the differences between the different 
sets of data in figure 14 are to be expected. Figure 14 thus suggests the need for an 
appropriate length scale. Sarohia's (1977) data also show almost linear variation of 
St, with h in each stage and agree qualitatively with ours. 

For the free shear layer, the profile defines a length scale (8 or 6,) of its own. One 
can thus expect that if a characteristic initial shear layer thickness (e.g. 8,) is chosen 
as the length scale, the free shear layer tone non-dimensional frequency variation for 
each stage may be universal. A number of data points for the exit shear layer momen- 
tum thickness (0,) as a function of the jet exit speed 7Je were obtained. Least-squares 
fits of these points gave an appropriate 8, us. U, curve, which was later used to obtain 
exit momentum thickness Oe at any exit speed U,. 

The frequency (St,J data of figure 14, when plotted as a function of h/8,, were 
found to fall on the same smooth line for each stage (figure 150). These data also 
collapse on one another if plotted on a St,, ws. h/B, plot, as shown in figure 15 ( b ) .  Note 
that the co-ordinates St, vs. h/O, in figure 15 ( b )  not only make the four sets of data 
collapse but also the ordinate variations in the three stages are brought in the same 
range. 
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FIGURE 15. (a) Strouhal number St,, of the plane free shear layer tone as a function of h/6, for 
different stages. ( b )  Strouhal number Sto, ( = fSe /Ue)  as a function of h/B, for different stages. 
The four data symbols represent the same four cases as in figure 14. 
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FIGURE 16(a). For legend see opposite. 

Figures 15 (a ,  b )  clearly point out the importance of initial shear layer thickness as a 
scaling parameter in the shear tone. The congruence of non-dimensional frequency 
data in each stage for four independent cases suggests that for each stage both St, 
and St, are universal functions of the ratio of the two length scales of the problem, 
viz. h and 8,. Thus either figure 15 (a) or 15 ( b )  predicts the shear layer tone frequency 
for any combination of h and V, for a particular free shear layer. That is, provided 
the variation of 8, as a function of V, is known for a free shear layer in a given con- 
figuration, one should be able to predict from figure 15 (a )  or 15 ( b )  the free shear layer 
tone frequency at any h for each LL or a t  any U, for each h. Figures 15 (a ,  b )  are thus 
key figures capturing the physics of the free shear layer tone phenomenon. These 
figures suggest that the shear layer tone is a function of the initial condition (Hussain 
1977). 

3.3. Shear laryer tone eigenvalues and eigenfunctions 
The free shear layer tone study would be incomplete without an understanding of the 
tone induced velocity amplitude variations across the layer, as well as the dependence 
of the wavenumber and phase velocity on the tone frequency. These data would 
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FIGURE 16. (a)  Transverse phase variation of the shear layer tone fundamental for the plane free 
shear layer a t  U, = 37.2m/s. Wedge a t  h = 1.4cm producing tone at  f = 3500Hz (stage 11). 
0, z = 0.508cm; A, z = 0.762cm; 0, z = 1.016cm; ---, spatial stability theory, for z = 1.016 
em (Michalke 1965). (b) Transverse (r.m.5.) amplitude variations of the shear layer tone funda- 
mental corresponding to three axial stations. The data symbols represent the same cases as in 
figure 16(a). ---, spatial stability theory, for z = l.016cm (Michalke 1965). 

represent the eigenfunctions and the eigenvalues of the shear layer tone flow; a 
successful shear layer tone theory must be able to predict these eigenfunctions and 
eigenvalues given the flow parameters, viz. h, U,, 8,, etc. These measurements were 
made in the plane free shear layer at the values of U,: 29.3 m/s, 37.2 m/s and 43.3 m/s 
with the plane wedge. For a fixed wedge location at a constant V,, a reference hot-wire 
probe was placed at  a fixed location in the flow (figure 1 a). The tone frequency was 
determined from the spectrum of the reference probe signal. The lock-in-amplifier 
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was then tuned (calibrated) a t  this frequency. The signal from the reference probe was 
(narrow) band-pass filtered before it was used as the reference signal in the lock-in- 
amplifier. The second probe was traversed in x and y and its signal was analysed by 
the lock-in-amplifier to determine the relative phase of the fundamental component 
of the shear tone induced velocity with respect to the reference signal. 

3.3.1. Shear layer tone amplitude and phase projiles. The transverse variation of the 
phase of the tone induced velocity fluctuation across the plane shear layer is shown 
in figure 16(a), for three axial locations of the signal probe. This figure corresponds 
to the wedge fixed a t  h = 1.40 cm while the tone frequency was 3500 Hz; note that 
the phase jump occurs on the low-speed side of the half-mean velocity point, i.e. 
( y -  y0.J/B = 0. All three figures have the same abscissa and ordinate, but the 
figures are shifted vertically by arbitrary amounts in order to avoid overlaps. 

The dotted curve represents the theoretical phase prediction according to the spatial 
stability theory (Michalke 1965; Freymuth 1966) corresponding to the station 
x = 1.02 cm. Even though the details of the theoretical profile do not agree well with 
the data, the agreement on the location and extent of phase jump is impressive. Other 
reasons for disagreement between the data and the stability theory were discussed 
in connexion with the probe-induced tone data in figure 3. 

Figure 16 (b)  shows the profiles of the r.m.s. amplitude of the tone-induced velocity 
fundamental u; corresponding to the three phase profiles shown in figure 16(a). Note 
that the tone velocity amplitudes increase in x. The data in figure 16 (b)  were obtained 
to check the speculation made while discussing the data of figure 3 that, compared 
with the probe-induced tone case, the plane-wedge-induced tone velocity amplitude 
profile will agree more closely with the spatial stability theory prediction. I n  spite 
of the various reasons for expecting discrepancy between the theory and the data 
(discussed in §3.1.1),  the agreement on the location of the notch in figure 16(b) and 
on the location and extent of the phase jump in figure 16(a) for the x = 1.02 cm case 
is very good. 

3.3.2. Phase velocity and wavenumber. From the phase profiles in figure l6(a),  
difficulties encountered in phase velocity measurements should be obvious. Owing to 
large transverse phase gradients, the uncertainty in phase velocity measurements, 
unless done judiciously, can be excessive. For example, the phase velocity, when 
calculated from phase data on a y = constant line, would vary from that determined 
along a U/L: = constant line. 

The following criterion was adopted for finding the propagation characteristics of 
the shear-tone-induced velocity disturbances. For a fixed location of the wedge, the 
signal hot-wire probe was traversed in y a t  each x station to find the maximum phase 
#,,, at that x. The rate of change of this maximum phase with axial distance, d+/dx, 
was then found over a short axial distance Ax covering a t  least six closely placed 
data stations. The variations Q(x) were observed to be linear within the axial distance 
0.50 cm < x < 0.9 cm, with the reference probe held fixed at  x = 0.914 cm. A mean 
straight line though the phase data within this x range gave dQ/dx, from which the 
phase velocity was determined. 

The shear-layer-tone-induced velocity wave characteristics can be determined 
from the assumption of a spatially travelling vorticity wave (Lin 1955; Hussain 1970; 
Hussain & Reynolds 1972) in a free shear layer which acts as the waveguide. While 
instability of the shear layer appears to be a central factor in the shear tone pheno- 
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Lip-wedge 
h 
A 
- 21, 

(hz) operation h(cm) = G( crn) U, 
Stage of distance A# deg - f 

3 100 I 
I1 

3300 I 
I1 

3500 I 
I1 

3700 I 
I1 

1.138 
1.750 
1.041 
1.598 
0.914 
1.440 
0.813 
1.334 

- 492 
- 494 
- 544 
- 546 
- 637 
- 640 
-719 
- 7 1 1  

0.610 
0.607 
0.598 
0.586 
0.531 
0.531 
0.498 
0.503 

1.56 
2.40 
1.57 
2.42 
1.62 
2.55 
1.62 
2.64 

TABLE 1 .  Phase variation data for stages I and I1  at U ,  = 37.2 m/s. 

2ne, - 
h 

0.116 
0.117 
0.128 
0.129 
0.150 
0,150 
0.169 
0.167 

menon, figures 16(a, b )  show that the measured wave characteristics do not truly 
represent a (single) normal mode. However, for the purpose of determination of the 
wave characteristics of the shear layer tone, the non-parallel aspect will be ignored 
and the measured quantities will be assumed to represent a spatially dependent 
normal mode. Thus we can represent the instantaneous longitudinal velocity fluctua- 
tion u due to  a shear tone mode as 

(3) 

where B(y)  is the complex amplitude distribution in the transverse ( y )  direction, 
a = a, + iai the complex wavenumber and w / a  = c is also complex, i.e. c = c, + ic i ,  
the measured phase velocity or celerity being given by v, = w/a, .  Note that figure 
16 ( b )  shows the amplitude profiles l4i(y)l a t  three stations in the shear layer tone flow. 
When normalized by the peak values, the three amplitude profiles would indicate a 
certain extent of streamwise homogeneity, thus essentially justifying the parallel flow 
assump tion. 

Within the approximation stated above, i t  is now possible to estimate the pro- 
pagating wave characteristics (a, or A, zi, v,) from the hot-wire data. From (3), it 
follows that a t  two streamwise locations x1 and x2, both a t  the same y location, 

u(x,  y ,  t )  = 4(4i(y) exp [i(ax - wt) ]  + complex conjugate), 

Denoting the phase of u by q5,, i.e. 

we can find h as 

The same tone frequency can be obtained in either stage I or stage I1 by properly 
locating the wedge in the axial direction. For four such frequencies, a t  U, = 
37.2m/s, it was found that the phase velocity was dependent on the frequency 
alone and not on the stage of the tone. Data (table 1) show negligible dependence 
of the phase velocity as well as the wavenumber on the stage of the shear tone. As 
already discussed, the y location of the sigml probe was slightly adjusted a t  each x 
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FIGURE 17. (a )  Variation of the phase velocity v, with the plane shear layer tone non-dimensional 
frequency StOe. All the data except the four represented by the solid squares were obtained with 
stage 1 operation. 0, U, = 29.3m/s; 0, U, = 37.2m/s; a, U, = 37.2m/s (stage I1 operation); 
0, u, = 43.3m/s. ---, spatial theory (Michalke 1965); ---, temporal theory (Michalke 1965). 
(b )  Variation of the non-dimensional wavenumber of the plane free shear layer tone as a function 
of St,. for stage I. A, U, = 29.3m/s; a, U, = 37-2m/s; 0 ,  U, = 43.3m/s; ---, spatial theory 
(Michalke 1965); ---, temporal theory (Michalke 1965). 
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station in order to locate the maximum phase; these y adjustments being extremely 
small, the line connecting the maximum phase locations may be regarded as essentially 
at  constant y. Note that the phase profiles in figure 16 (a )  cover an x range larger than 
that used in the determination of v, and A. 

The phase velocity v, was then found for different frequencies spanning the range 
available for the first stage of operation as indicated in figure 4. The v, data, including 
those at  two other speeds, are plotted as a function of the frequency (i.e. Strouhal 
number) in figure I7 (a) .  Note that for the first two stages of the U, = 37-2 m/s case 
the v, data are independent of the stage and depend only on f .  In the different works 
on shear layer instabilities and organized structures (e.g. Browand & Laufer 1975; 
Hussain & Thompson 1975) comparable values of the phase velocity have been 
reported. Note that disturbance propagation velocity decreases with increasing 
frequency. 

The shear layer tone wavenumber as a function of St,, is plotted in figure 17 ( b )  
for the first stage of the same three cases used in figure 17 (a).  The wavelength increases 
with decreasing frequency in each stage. The theoretical predictions based on the 
spatial and temporal instability theories of Michalke (1965) for the same St, range 
are also shown for comparison. As stated earlier ( §  3.1.1)) there are various differences 
between the theory and the real flow; any of those could explain the lack of agreement 
between the wavenumber andLphase velocity data and the theory (figures 17a, b ) .  
However, the trend of the data appears to agree qualitatively with the spatial in- 
stability theory. Note that Freymuth’s (1  966) data in a free shear layer under excitation 
agreed with the spatial theory at  lower Strouhal number St, but with the temporal 
theory at higher St,. On the other hand, Crow Rt Champagne (1971) found close 
agreement of their experimental eigenvalue data with the temporal theory. While the 
spatial theory is expected to be the appropriate one for our experiment, it may still 
be inadequate to predict the data. When the non-parallel nature of the mean flow is 
taken into account in the spatial theory, variations of v,/U, and 27rO,/h with St,, 
would agree with the data more closely than shown in figure 17(a, b )  (P. J. Morris, 
private communication). Note that 0 is essentially equal to 0, within the x range 
over which v, and h have been measured (figure 10)) thus justifying use of St,, in 
figure 17(a, b ) .  

Since the phase velocity and wavelength are found to be unique functions of the 
free shear layer tone frequency in each stage, a cross-plot of vC/& as a function of 
h (or l7,) would show a jump in v, and h at the location of a frequency jump. That, is, 
as h is increased at  a fixed V,, both h and v, will increase monotonically in one stage, 
then drop at  the start of the next stage, This result is in contrast with the data presented 
by Sarohia (1 977), who found a smooth variation of the phase velocity during a fre- 
quency jump. For a particular stage of operation, however, the increase in phase 
velocity with decreasing shear tone frequency in our data is in qualitative agreement 
with Sarohia’s data. 

For a constant h, we have found that v C / q  increases with increasing U,, thus 
suggesting that the feedback is not instantaneous or hydrodynamic. If it  were so, 
v,/U, would be constant. On the other hand, increasing delay due to feedback with 
increasing U, would require VJU, to increase also. This is what the data show. This 
aspect is also being investigated currently. 

3.3.3. T h e  h-h relation. The values of h / A  as a function of St,, for U, = 29.3, 37.2 
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FIGURE 18. Variation of the ratio h/h with the shear layer tone frequency St,, for stages I 
and 11. 0, U, = 29-3mls; 0, U, = 37.2m/s; 0, 77, = 43.3mjs; x ,  Sarohia (1977). 

and 43.3 m/s are shown in figure 18 for the first two stages. In  the slit-jet edge tone, 
Brown (1937a) showed that the ratio h/h is not a whole number, even though it is 
approximately a constant in each stage cf operation. Curle (1 953) hypothesized from 
different available data on edge tone, including Brown’s, that the ratio bears a relation- 
ship of the form of ( 2 ) .  The present data in figure 18 show that the ratio is essentially 
a constant in each stage; however, there is a slight increase with increasing frequency, 
the rate of increase being higher for stage 11. The mean value of the quantity h/h 
in stage I is about 1 -6 while that in stage I1 is about 2.5;  thus the constant in the free 
shear layer tone is different from 0.25 in the Brown-Curle equation ( 2 )  for jet edge 
tone. This difference should remind one that the instability mechanism in the free 
shear layer tone differs from that in a jet edge tone phenomenon. Note that Sarohia’s 
(1976) data are in good agreement with ours (figure 18). 

4. Concluding remarks 
The hot-wire probe has been found to induce stable upstream oscillations in a free 

shear layer, similar to the jet edge tone mechanism. It is surprising that no previous 
investigator has reported this effect. This effect can be significant also in measure- 
ments involving large-scale organized structure, conditional sampling, space-time 
correlation, convection velocity, etc., when a reference or indicator probe may be 
used near the origin of the free shear layer. Such a probe can alter the instability 
frequency, the roll-up, the subsequent vortex coalescences, and thus the downstream 
large-scale coherent structure as well as the shear layer integral measures. 
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It appears that even in a free shear layer without any wedge, an object in the flow 
sufficiently downstream can also provide feedback to the flow upstream. In  fact, the 
influence of the detection hot wire on the vortex shedding behind a cylinder, observed 
by Kovasznay (1949) and others, may be due to the effect studied here. On the other 
hand, in a turbulent free shear layer the coherent structure a t  a location can be the 
result of organization by feedback from the large-scale coherent structures further 
downstream (Dimotakis & Brown 1976; Naudascher 1967). The shear tone mechanism 
may also make a turbulent free shear layer sensitive to downstream boundary 
conditions. 

The present study should caution against unsuspecting use of invasive probes in 
the near field of a free shear layer as shear tones are likely to be formed for h 7 2008, 
and d Y 58,. The unstable frequency measured by a hot wire can be altered by about 
20% owing to the shear layer tone which, however, can be taken advantage of in 
measuring the most unstable frequency of the free shear layer. When h is varied 
gradually, the tone frequency at  which the velocity oscillation is the largest identifies 
the most unstable frequency. 

The characteristics of the probe- or wedge-induced tone in a single free shear layer 
are found to  be somewhat similar to those of the slit jet-wedge edge tone phenomenon. 
I n  any stage of operation, the tone frequency is directly proportional to the shear 
layer characteristic velocity scale U, and nearly inversely proportional to the lip-wedge 
distance h. Detailed data pointed out some differences from published jet edge tone 
data; these differences are summarized below. 

The free shear layer tone phenomenon does not appear to involve hysteresis in the 
frequency jumps between stages, as is observed in jet edge tone. During a transition, 
the phenomenon was found to occur only in one mode at a time while randomly 
flipping between the two modes, and thus contrasts the jet edge tone where simul- 
taneous existence of two modes (stages) has been reported. In  any stage of operation, 
the non-dimensional frequency St,& is not found to remain constant as is the case in 
jet edge tone; Sth increases linearly with h. The shear tone data have been shown tc 
fall on the same smooth curves in each stage on a st, (or st,,) vs. hl8, plot, thus per- 
mitting prediction of shear layer tone frequency for each choice of h, U, flow con- 
figuration (geometry), and initial condition (e.g. 0,). These data confirm that 8,, along 
with h, is an important length scale of the shear layer tone phenomenon. Present 
data show evidence of existence of hmin for shear tone to occur a t  each U,. However, 
there is no clear evidence ofa  corresponding h,,, beyond which the tone will not occur. 

The occurrence of the subharmonic frequency in this study is attributed to vortex 
coalescence. It appears that in the presence of periodic feedback, the coalescence, 
which otherwise occurs randomly in space and time, is organized and somewhat 
accentuated, thus giving an identifiable subharmonic spectral peak. 

The amplitude and phase profiles of the shear layer tone induced velocity funda- 
mental, as well as dependence of phase velocity and wavenumber on the Strouhal 
number show good agreement with the linear spatial instability theory of Michalke 
(1965); agreement with the data will be improved when the non-parallel effect is 
included in the spatial theory. The h-h relation is found to be different from the 
Brown-Curle equation for jet edge tone. For the first two stages, the relation is found 
to be h N ( J  + C,) A ;  the parameter C, varies somewhat from stage to stage and is 
about 0.5. 
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From our data it is apparent that instability of the free shear layer, and the lip- 
wedge distance h must be the key factors to produce its tone. The initial velocity 
profile and thus its characteristic length scale like initial momentum or vorticity 
thickness will affect its instability. The instability of the free shear layer is the pre- 
condition for shear tone; the wedge has no influence on the shear layer instability, 
other than to provide positive feedback to the sensitive point, i.e. the lip, and organize 
the otherwise randomly occurring instability, nonlinear saturation and vortex roll-up. 
A particular mode finds stable amplification through the tone feedback when the 
corresponding aos t  unstable wavelength matches appropriately with the lip-wedge 
distance, or stated another way, when the shear layer instability induced disturbance 
at  the wedge arrives a t  the lip at  the correct phase to provide positive feedback and 
sustain the instahility. 

It appears that the non-parallel aspect of the shear layer instability is not the 
central factor in shear tone behaviour. Further details of the shear layer tone and 
the role of instability are currently being investigated in our laboratory. 
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